
International Journal of Computer Trends and Technology Volume 69 Issue 2, 41-45, February 2021
ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I2P106 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Microsoft Azure Dynamic Pipelines

Sanjeev Kumar

SAP Analytics Solution Architect, GyanSys Inc, 702 Adams Street, Carmel IN, USA

Received Date: 21 December 2020
Revised Date: 04 February 2021

Accepted Date: 07 February 2021

Abstract - Azure Data Factory is a cloud-based data

integration service that allows you to create data-driven

workflows in the cloud for orchestrating and automating

data movement and data transformation.

Azure Data Factory does not store any data itself. It

allows you to create data-driven workflows to orchestrate

the movement of data between supported data stores and the

processing of data using compute services in other regions

or in an on-premise environment. It also allows you to

monitor and manage workflows using both programmatic
and UI mechanisms.

Keywords - Azure ADF, Cloud Computing, Data

Factory pipelines

I. INTRODUCTION

The Azure Data Factory service allows you to create
data pipelines that move and transform data and then run the

pipelines on a specified schedule (hourly, daily, weekly,

etc.). This means the data that is consumed and produced by

workflows is time-sliced data, and we can specify the

pipeline mode as scheduled (once a day) or one time.

So, what is Azure Data Factory, and how does it work?

The pipelines (data-driven workflows) in Azure Data Factory

typically perform the following three steps:

 Connect and Collect: Connect to all the required sources

of data and processing, such as SaaS services, file

shares, FTP, and web services. Then, move the data as
needed to a centralized location for subsequent

processing by using the Copy Activity in a data pipeline

to move data from both on-premise and cloud source

data stores to a centralization data store in the cloud for

further analysis.

 Transform and Enrich: Once data is present in a

centralized data store in the cloud, it is transformed

using compute services such as HDInsight Hadoop,

Spark, Data Lake Analytics, and Machine Learning.

 Publish: Deliver transformed data from the cloud to on-

premise sources like SQL Server or keep it in your cloud
storage sources for consumption by BI and analytics

tools and other applications.

II. AZURE ADF DYNAMIC PIPELINES

During the recent project I implemented at one of our

prestigious clients in the manufacturing space, I encountered

a specific requirement to ingest data from 150 different

sources. Creating separate pipelines for each data source will

end up creating 150 ADF pipelines, and that could be a very

complex maintenance effort post-go-live. I did a lot of

research and came up with a design to configure Dynamic

Pipelines, which means that every data set would run through

the same pipeline. To logically design the lifecycle of a
dataset from source to the destination inside a Synapse table,

I planned to configure 3 pipelines that do the whole data

processing to ingest data into Synapse. As a result, all 150

data sets were able to get processed within just 3 pipelines.

This is a very sophisticated technical configuration, and I

neither find it anywhere over the internet nor found any

books. I would like to share this knowledge and experience

gained so that anyone who is trying to implement something

similar can design the best industry solution, which is robust,

maintainable, and re-usable. This did make my client team

very impressed. So here we go.

A. Business Requirement
Let me first talk about the business requirement. There

are around 150 different sources of Point-of-Sales data from

different online retailers like Amazon, Home Depot, Way

Fair, Lowes, etc. Business users used to go to each point-of-

sales platform to download the data for analysis purposes.

For example, to find out how many customers browsed their

product on Amazon, Home Depot, or Way Fair platforms,

for how long they were there on the website, how many
products they added to the cart, what other products they

added to the cart, did they end up buying all of them or just

abandoned the cart. For all such kinds of analysis, business

users had to go to each platform separately to download the

data. Not only that, after downloading the data, they had to

apply multiple business logic to convert that data into some

meaningful information.

The intent of this project is to bring all this data from all

different sources into one platform and apply the business

logic as well before the business team access and create their

reports. Microsoft Azure Platform was chosen by the
customer due to the latest and greatest cloud technology

features like Azure Data Factory, Data Lake, Synapse, Logic

Apps and Power BI services, etc.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Sanjeev Kumar / IJCTT, 69(2), 41-45, 2021

42

B. Azure Data Factory
One of the major components implemented in this

project is Azure Data Factory. Azure ADF is used to pick the
datasets from multiple sources, and these data sets are in a

very unstructured format. This dataset passes through the

Azure ADF pipelines for processing and to convert it into a

structured format together with business logic applied to it.

Finally, via Azure ADF, this data is moved into Synapse and

Data Lake. Business users finally access this data via Power

BI service by connecting it to Data Lake or Synapse DW.

C. Dynamic Azure ADF Pipelines

To save a lot of maintenance effort and also the

development time, I came up with a unique solution design
to create dynamic ADF pipelines. All 150 datasets pass

through one single pipeline dynamically.

Fig. 1 High-Level Solution Architecture

Azure ADF Dynamic Pipeline components

Below are the main components configured to set up a

dynamic pipeline:

 Cosmos DB

 Blob Storage Containers

 Synapse

 SQL Stored Procedures

 Data Bricks

D. Cosmos DB

Cosmos DB is a unique database that can hold data in

JSON format. This database is used to store the

configurations related to each data set. When a dataset starts

processing within the data factory pipeline, the configuration

related to that data set is read from Cosmos DB, and

accordingly, that data set is processed, e.g., config related to

condition is this dataset is unstructured and has to pass
through the data bricks to convert it into a structured format

or information related to the fields which will go into the

final table in Synapse, information about the stored

procedure to be triggered for that particular data set, etc.

Example – Cosmos DB dataset configuration.

You can find more information during the ADF discussion

ahead on how to use this configuration within pipelines.

E. Blob Storage container

Files or data sets from the shared drive or other online

platforms are captured and landed into the blob storage in

Excel, CSC, JSON formats. These files are either dropped

manually or via email or pulled via APIs. As soon as a Blob

or a data set hits the Blob storage container, the data factory

pipeline gets triggered to process it.

Synapse: This is the final data warehouse service where the

processed data is stored in tables,

F. SQL Stored Procedures

After converting the file from an unstructured to a

structured format, stored procedure/s are run to apply the

business logic and turn that data into meaningful information

and finally to store that data in the synapse table.

G. Databricks

If a dataset is in an unstructured format, that needs to be
converted into a structured format first based on the fields

required by the business to analyze on. This processing

happens via data bricks. Databricks component consists of a

python programming paradigm which does this conversion

from unstructured to the structured format.

H. Dynamic Pipeline configuration:

To logically divide the whole data set processing until

Synapse table, there are 3 pipelines configured – Router, Pre-

process and Post-process. The router pipeline picks the data

set file and passes it to either pre-process pipeline or post-
process pipeline. If any dataset needs to be converted from

an unstructured to a structured format, they are passed to the

pre-processing pipeline and processed here. After

conversion, the original data set file is converted into

Sanjeev Kumar / IJCTT, 69(2), 41-45, 2021

43

multiple structure CSV files, and these files are further

passed to the post-processing pipeline to move data to the

Synapse table. Any files which are already structured and

need no pre-processing are directly passed to the post-

processing pipeline for Synapse storage. To achieve the
dynamic behavior of the pipelines, there is extensive use of

variables and parameters within the pipelines. Any

information related to datasets is not at all hard-coded

anywhere in the pipelines, and everything is achieved via

Cosmos config and variables/parameters within the pipeline.

For the dynamic pipeline config settings, I will talk about

only one pipeline, which the first pipeline that picks the data

set, i.e., Router data factory pipeline. I divided the dynamic

process into 2 parts:

I. Main Pipeline or Parent Pipeline
 The purpose of this pipeline is to pick the dataset and

pass it to another processor pipeline that does all the

processing. If for any reason any activity in the processor

pipeline fails, the main pipeline will send out appropriate

error information returned by the processor pipeline to the

authorized recipients via email. Also, the error is logged in

the COSMOS DB, which is further connected to Power BI,

where a full-fledged dashboard is set up to analyze the

errors, and preventive action is taken based on the analysis

performed.

Processor pipeline: This pipeline reads the cosmos config,
picks up the files from the blob storage container, and

processes it accordingly.

III. MAIN/PARENT PIPELINE

Fig. 2 Architecture

get filename: It’s a ‘Get Metadata’ activity. Notice the Field
list configuration selected as ‘Item name.’ As soon as the

blob hits the folder in the blob container, this pipeline is

triggered, and the ‘Get Metadata’ activity picks up the file

name from the folder.

set filename: This is a ‘Set Variable’ activity. The name of

the file is passed to this variable.

Run Router Data Factory: This is the ‘Execute Pipeline’

activity and triggers the processor pipeline.

Pipeline Error Message: This is a ‘Set Variable’ activity.

Notice that this activity is connected as a failure process of

the previous activity. The previous activity runs the

processor pipeline, so this means if there is any activity that

fails in the processor pipeline, the error returned gets stored

in a variable.

@activity('runRouterDataFactory').Error.Message

Send Failure Notification: This is another ‘Execute

Pipeline’ activity and triggers a separate pipeline to send out

Sanjeev Kumar / IJCTT, 69(2), 41-45, 2021

44

an error notification. All the necessary information is passed

to the pipeline to send the email notification.

Move Failed File: This is a ‘Copy data’ activity. Since there

was an error in the processor pipeline, the dataset needs to be

re-processed after fixing the error. This activity moves the

failed data file from the landing folder to a different ‘error’

folder, which holds the error data files. They can be fixed
and moved back to the landing folder for re-processing.

IV. PROCESSOR PIPELINE

A. Architecture

B. Check Cosmos Configs Returned

 This is an ‘IF condition’ activity. This condition checks

if a configuration related to the data set in the process is

available in Cosmos DB or not and is read by the Lookup

activity.

If ‘True’: Do Nothing.

If False: This means config is not available, and it makes no

sense to move further in the pipeline. Raise an error

message and force pipeline to error.

C. Send Cosmos Error Notification
 This is an ‘Execute Pipeline’ activity and triggers Send

Notification pipeline with all necessary information required,

i.e., email body, subject, and email IDs.

D. Force erro
 This is a Lookup activity. But it is a trick to use this activity

to throw an error instead of reading any data. Check out the

below config.

E. Check Destination File Name
This is an ‘If Condition’ activity. This is one example

where I can show how Cosmos DB config is used within

pipelines. There is a placeholder in Cosmos DB that holds
the name of the ‘Destination’ file, which means when the

file is processed, which means that after the file is converted

from unstructured to structured data, the processed file is

dropped into another folder in the storage container and the

name of that file will not be similar to the name with the file

was dropped in the source folder, but it will be a new name

as maintained in the Cosmos config as “destination file”

below;

Property ‘useSourceFileName’ has value “true” or “false,”

which will be looked at in the Data Factory in this ‘IF
condition.’

If “True”:

Copy the file to the destination folder with the file name

maintained in the Cosmos DB.

If “False”:

Copy the file to the destination folder with the file name,

same as the source file.

https://www.sqlservercentral.com/wp-content/uploads/2021/02/img_602d0c233cecc.png

Sanjeev Kumar / IJCTT, 69(2), 41-45, 2021

45

F. Move Completed File

This is a “Copy” activity. Once the file is processed, it’s a

success, and the file is moved to a different folder titled

‘completed.’ You can also attach a timestamp with the file

name to keep track of the files processed with time.

G. Send Success Notification

This is the ‘Execute pipeline’ activity. Once the file is

processed successfully, a success message is sent out. This

activity triggers another process chain, ‘send Notification.’

Can find trends in the data provided and able to come up

with state-of-the-art dashboards and reports with just a

click of a button. Data security provided by SAP Analytics

Cloud is incomparable to any other tool available as of
today in this space. The cloud connector and cloud agent

config keep the data always secure via HTTPS protocol

and do not let any hacking take place. The planning

feature of SAP Analytics Cloud makes it possible to plan

for the near future or predictive planning for long-term

business decisions.

V. CONCLUSION

Azure Data Factory is a very robust data integration and

ingestion platform that can process terabytes to petabytes of

data stored in the storage containers or data in transit via

outside sources. With the right design, data ingestion to the
Azure platform can be made dynamic, easy to maintain, and

easy to fix. Hope this article is helpful in designing efficient

data factory pipelines that will save a lot of time and effort.

VI. REFERENCES
[1] https://docs.microsoft.com/en-us/azure/data-

factory/#:~:text=Azure%20Data%20Factory%20is%20Azure's,with

%20full%20compatibility%20in%20ADF.

[2] https://docs.microsoft.com/en-us/azure/data-factory/introduction.

	Abstract - Azure Data Factory is a cloud-based data integration service that allows you to create data-driven workflows in the cloud for orchestrating and automating data movement and data transformation.
	A. Business Requirement
	B. Azure Data Factory
	C. Dynamic Azure ADF Pipelines
	Azure ADF Dynamic Pipeline components

